State diagram for operators with null space or conull space in an ideal of Banach spaces
نویسندگان
چکیده
منابع مشابه
State Diagram for Operators 6vith Null Space or Conull Space in an Ideal of Banach Spaces
1 .Introduction Let B be the class of all Banach spaces ; the scalar field K is either the real field or the complex field . Al1 operators acting between Banach spaces which appear in this article are supposed to be linear . For X,Y e B,£(X,Y) is the space of all operators from X into Y, the class of all operators from X into Y with dense domain is denoted by cCD (X,Y), IX denotes the identity ...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملNonwandering operators in Banach space
We introduce nonwandering operators in infinite-dimensional separable Banach space. They are new linear chaotic operators and are relative to hypercylic operators, but different from them. Firstly, we show some examples for nonwandering operators in some typical infinite-dimensional Banach spaces, including Banach sequence space and physical background space. Then we present some properties of ...
متن کاملweak banach-saks property in the space of compact operators
for suitable banach spaces $x$ and $y$ with schauder decompositions and a suitable closed subspace $mathcal{m}$ of some compact operator space from $x$ to $y$, it is shown that the strong banach-saks-ness of all evaluation operators on ${mathcal m}$ is a sufficient condition for the weak banach-saks property of ${mathcal m}$, where for each $xin x$ and $y^*in y^*$, the evaluation op...
متن کاملSemigroups of Operators in Banach Space
We begin with a definition Definition 1. A one-parameter family T (t) for 0 ≤ t < ∞ of bounded linear operators on a Banach space X is a C 0 (or strongly continuous) Semigroup on X if 1. T (0) = I (the identity on X). 2. T (t + s) = T (t)T (s) (semigroup property) 3. lim t↓0 T (t)v = v for all v ∈ X (This the Strong Continuity at t = 0, i.e., continuous at t = 0 in the strong operator topology)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publicacions Matemàtiques
سال: 1986
ISSN: 0214-1493
DOI: 10.5565/publmat_30186_09